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When advection dominates diffusion, there are special directions (rays), distinct from 
but closely related to the contaminant flux vector, along which information is carried. 
The geometry of these ray paths is found to depend in a simple way upon the advection- 
diffusion vector *u/D, where u is the flow velocity and D the cross-stream diffusivity. 
Simple models are used to show that for a steady point discharge the contaminant 
concentration is greatest in shallow water and towards the outside of bends. 

1. Introduction 
Kay (1982) has demonstrated the strong influence of depth topography upon the 

horizontal spreading of a contaminant plume in vertically well-mixed currents. His 
mathematical analysis used the method of images, with real and virtual contaminant 
sources, and is therefore restricted to certain abrupt geometries. The purpose of the 
present work is to investigate the complementary problem of a steady discharge in 
water of smoothly varying depth. 

For turbulent currents in shallow water, the effective diffilsivity for the spreading 
of contaminants scales as the product of the local water depth and the friction velocity 
(Elder 1959). Typically the friction velocity u* is between ten and twenty times 
smaller than the bulk velocity u. Thus, there is an implicit small parameter 

S = u*/lul (1 .1)  

in the equation for horizontal dispersion. 
The idea of ‘ray methods’ is to exploit explicitly the presence of such a small 

parameter. Originally these methods were developed for wave problems. However, 
Cohen & Lewis (1967) have shown that in principle these same mathematical methods 
can be used for diffusion problems. Here we apply these methods to the two-dimen- 
sional advection-diffusion equation. The outcome is a simple constructive procedure, 
which yields an accurate approximation to the concentration distribution. 

2. The ray ansatz 

persion equation to be of the form 
As the starting point for our mathematical analysis, we take the horizontal dis- 

(2.1) 

Here V is the horizontal gradient operator (az, aV), h(x, y) is the water depth, u(x, y) 

V . (~cu) - SV . ( ~ D V C )  = 0. 



374 R. Smith 

the vertically averaged flow velocity, c(x, y) the concentration, and D(x, y) the turbu- 
lent diffusivity across the flow. Strictly, we should use a diffusivity tensor Dij because 
there is a considerable disparity between the dispersion coefficients along and across 
the flow (Elder 1959). However, away from the immediate vicinity of the discharge 
this technical complication does not significantly affect the contaminant distribution 
(i.e. concentration gradients are predominately across the flow). The parameter s is a 
reminder of the relative importance of the terms in (2.1). For example, if we introduced 
advection-velocity and length scales U and L, then the non-dimensional diffusivity 
D / U L  would be numerically small. 

For a uniform medium we know that the exact solution for a steady point discharge 
rapidly attains an exponential profile across the contaminant plume (Kay 1982). 
Moreover, at  distances of order unity from the discharge the exponent has a magnitude 
s-l. When the depth topography and current are non-uniform, we assume that these 
properties still hold. Thus we pose the representation 

(2.2) c = aexp ( k $ / E )  

(Cohen & Lewis 1967, equation (3.1.1)). Here a ( x , y ; s )  is an amplitude factor and 
qi(x, y; E )  the decay exponent. A minor departure from the method of Cohen & Lewis 
(1967) is in the use of the k sign. If the steady flow were reversed (i.e., + u replaced 
by -u), then the direction of the plume would likewise be reversed. The k sign is a 
technical device to ensure that this property is preserved exactly. 

3. Eikonal and transport equations 

flow velocity ? u, then we generate terms proportional to 
If we substitute the ansatz (2.2) into the advection-diffusion equation (2.1), with 

exp ( & qi/e) and k exp ( k $/+ 
Equating these groups of terms separately to zero, we have 

and 
hu . Vqi - hD(V$)z = s2V. (hDVa)/a, 

V . (hua) - V . (hDaVqi) - hDVqi . Va = 0.  

Cohen & Lewis (1967, equations (3.1.2) and (3.1.3)) use a different splitting into two 
equations, with the magnitude of the right-hand-side terms increased from s2 to E .  

As yet there have been no approximations made. By the nonlinear transformation 
(2.2), we have replaced the original linear equation (2.1) by the coupled nonlinear 
equations (3.1) and (3.2). The crucial simplification is that, unlike the original variable 
c(x, y), the new variables qi and a vary slowly. Thus, when E is small, we can infer that 
the variables have asymptotic expansions 

qi = $ o + ~ 2 $ 1  + ..., and a = a,+s2a,+ .. . . (3.3) 

The rapid reduction in size of the successive terms in these expansions means that 
in practice it is not necessary to proceed beyond the leading terms. Thus, we shall 
omit the zero subscript and simply replace (3.1) by the first-order equation 

(~-DVqi) .Vqi  = 0. (3.4) 

We note that, as a result of the expansion in 8, the equations for the decay exponent 
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FIGURE 1, Geometrical relationships between the directions of the current, the contaminant flux 
and the ray paths. 

and the amplitude factor have become decoupled. In the terminology of ray methods, 
(3.4) is called the ‘eikonal’ equation and (3.2) the ‘transport’ equation. 

To a first approximation, the concentration gradient Vc and the contaminant flux 
vector uc  - eDVc are given by 

[e-laexp ($/e)]V$ and [uexp ($/€)I (u - DVq5). ( 3 4  
Thus, the eikonal equation admits of the physical interpretation that the contaminant 
flux is orthogonal to the direction of maximum concentration gradient. Equivalently, 
the concentration distribution has arisen because of the flux of contaminant and 
therefore the concentration gradient is minimised in that direction. As is familiar in 
wave problems, ‘information ’ OF changes in the solution are carried along yet another 
vector field - the ray paths. 

4. Ray paths 
In order to solve (3.4), we shall use the method of characteristics or rays (Courant & 

Hilbert 1962, chapter 2).  The ray direction is along the unit vector 

t = (U-2DV$)/lUI (4.1) 

(see figure I). Let s be the arc length along a ray path. The derivative of a function 
f(x, y) with respect to s is defined by 

aj/as E ( t .  V)f = (u - a m # ) .  Vf/lUl. (4.2) 

In  particular, taking f = q5 and eliminating (Vq5)2 by means of the Eikonal equation 
(3.41, we obtain the result 

8 $ / 8 ~  = - ( lu l -u . t ) /2D.  (4.3) 
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Thus, the rate of exponential decay along a ray depends upon the relative direction 
of the ray path and the current. 

In  order to extend a ray path away from the source we must know both its direction 
t and its curvature K .  If k is the unit vertical vector, then we define the ray normal n 
so that t, n, k form a right-handed triad (see figure 1). In terms of n, s and t ,  the 
curvature K is defined as 

~ = n . - t = n . [ ( t . V ) t ] = n . [ ( V x t ) x t ] ,  

since t , t = 1. If we define the advection-diffusion vector K by 

(4.4) 
a 
as 

K = u/2D (4.5) 

t = (K-V$)/]Kl.  (4.6) 

(4.7) 

Thus, rays tend to go into regions in which IKI is large and are bent in the sense of 
rotation of .K (see $6). 

(Kay 1982), then it follows from (4.1) that 

Hence, with some manipulation of vector products, it  follows from (4.4) and (4.6) that 

K = (n.VIKI + k . ( V  x K))/lKl. 

5. Amplitude factor 
To complete our solution for the concentration distribution c(x, y; e) ,  we need to 

determine the amplitude factor a(x,y). Again, this is facilitated by the use of ray 
paths. First, we observe that by using (4.2) the transport equation (3.2) can be written 
as an ordinary differential equation: 

Next, we introduce a parameter p which labels the individual rays, and we consider 
the ray separation 

If we take the s-derivative of this formula and eliminate second derivatives with 
respect to p by means of the chain rule, for example, 

(5.3) 

then we can obtain the general result (Cohen & Lewis 1967, equation (3.1.13)) 

aJ/as = JV. t. (5.4) 
For the particular case being studied here, with the ray direction t given by (4.1), this 
result can be written 

(5.5) 

Using (4.1) in the form DO$ = $(u-lult), we can now re-write the transport 

(5.6) 

a q a s  = J[V . ( U / I U ~ )  - 2v. (DV+/JU\)I. 

equation (5.1) as l a a  1 1  aJ 1 1 a 1 V .  (hu) 
---+---+--- (hlul) = --- . 
aas 2Jas  2hluJ as 2 hlul 
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FIGURE 2. Ray paths for contaminant spreading when the water depth varies across the flow. 

Conservation of mass for the steady current implies that the right-hand side is zero. 
Thus, (5.6) can be integrated at  sight to yield the important result 

a~*h*lul* = constant along rays. (5.7) 

An immediate implication is that the contaminant concentrations are greatest where 
the rays are convergent (i.e. where the ray separation J is relatively small). 

6. Illustrative examples 
For any real topography, the ray curvature would have to be calculated numeri- 

cally. However, it is of interest to consider some simple examples. 
For steady, unstratified, plane parallel flow in water of non-uniform depth h(y) ,  the 

velocity varies as hfr and the turbulent diffusivity as h% (Smith 1976). To model this 
we take 

K = constant (i/h, 0,O). (6.1) 

K = (l-t,)Z/h, (6.2) 

From (4.4) it  then follows that 

where t, is the x-component of the unit vector t. Thus, in accord with Kay’s (1982) 
analysis, the rays, and hence the contaminant flux, tend to curve towards the deeper 
water (see figure 2).  Moreover, the variation in hlul further exaggerates the asym- 
metry of the concentration distribution. For more complicated velocity and diffusivity 
distributions, the same general features can be expected provided that K increases 
towards the shoreline. 

As a complementary example, we next consider the case in which the depth varia- 
tions take place in the direction of flow. The velocity varies as h-l and the diffusivity 
remains constant: 

K = eonstant (i/h(x), 0,O). (6.3) 

K = t , Z / h ,  (6.4) 

If we use the component notation t = ( t l ,  t,, 0) ,  then it follows that 
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FIGURE 3. Ray paths for contaminant spreading when the water depth varies along the flow. 

FIGURE 4. Ray paths for a source in a curved channel. 

and if the flow is into deeper water, then the rays are divergent (see figure 3). This 
implies that the contaminant is more spread-out with correspondingly reduced 
concentration. 

In  cylindrical polar co-ordinates, the advection-diffusion vector for a curved 
channel takes the form 

K = constant (0, - l / h ( r ) ,  0). (6.5) 
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Using the standard formulae for V and V x in this axis system, we obtain 

l / r  + (1 +to)  h'/h. (6.6) 

Hence, in the absence of depth variations, the curvature of the rays is the same as the 
curvature of the current. This has the nice consequence that the central ray from 
the contaminant source continues along the changing flow direction. However, to the 
outside of the bend the rays are more closely aligned with the current (see figure 4), 
implying that the contaminant distribution will be skewed towards this side (i.e. the 
concentration exhibits the inertia-like tendency to move in a straight line). 

K = -  

I wish to thank British Petroleum and the Royal Society for financial support. 

Appendix. Accuracy of the solutions 
One class of problems for which it is possible to solve the advection-diffusion 

equation (1.1) exactly is obtained when the water depth and diffusivity are taken to 
be constants and the flow velocity is irrotational: 

Here X(x, y) is a velocity potential and Y(x, y) a stream function. A change of variables 
to X ,  Y transforms (1.1) to the Cartesian form 

- - e D [ & + g ]  ac = 0. 
ax 

For a steady point discharge, the exact solution is 

c = exp ( ~ / 2 e D )  K, ( [x~+ Y~]+/ZED) .  

K,(z) - (n/2z)* exp ( -  z) .  

(A 31 

For large values of the argument, the modified Bessel function has the asymptotic 
approximation 

At x = 1 the error is less than lo%, and by z = 10, the error is down to 1 %. The 
presence of the small parameter e in the exact solution (A 3) means that the asymp- 
totic form is achieved very close to the source. As we might have anticipated, the 
asymptotic solution for c is precisely the ray solution 

(A 4) 

Back in the physical (x, y) co-ordinates, the condition for one-per-cent accuracy is 
that the distance from the source exceeds 

20 €D/lUl. (A 6) 

For turbulent open-channel flow this requirement is actually less stringent than the 
conditions for (1 .1)  to be applicable (i.e. for the dispersion to be primarily horizontal 
and not vertical). 

13 FLM 1x0 
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